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A Bayesian Nonparametric Regression Model With
Normalized Weights: A Study of Hippocampal Atrophy

in Alzheimer’s Disease

Isadora ANTONIANO-VILLALOBOS, Sara WADE, and Stephen G. WALKER

Hippocampal volume is one of the best established biomarkers for Alzheimer’s disease. However, for appropriate use in clinical trials
research, the evolution of hippocampal volume needs to be well understood. Recent theoretical models propose a sigmoidal pattern for
its evolution. To support this theory, the use of Bayesian nonparametric regression mixture models seems particularly suitable due to the
flexibility that models of this type can achieve and the unsatisfactory predictive properties of semiparametric methods. In this article, our aim
is to develop an interpretable Bayesian nonparametric regression model which allows inference with combinations of both continuous and
discrete covariates, as required for a full analysis of the dataset. Simple arguments regarding the interpretation of Bayesian nonparametric
regression mixtures lead naturally to regression weights based on normalized sums. Difficulty in working with the intractable normalizing
constant is overcome thanks to recent advances in MCMC methods and the development of a novel auxiliary variable scheme. We apply the
new model and MCMC method to study the dynamics of hippocampal volume, and our results provide statistical evidence in support of the

theoretical hypothesis.

KEY WORDS: Dependent dirichlet process; Latent model; Mixture model.

1. INTRODUCTION

Alzheimer’s disease (AD) is an irreversible, progressive brain
disease that slowly destroys memory and thinking skills, and
eventually even the ability to carry out the simplest tasks
(ADEAR 2011). Due to its damaging effects and increasing
prevalence, it has become a major public health concern. Thus,
the development of disease-modifying drugs or therapies is of
great importance. In a clinical trial setting, with the purpose of
assessing the effectiveness of any proposed drugs or therapies,
accurate tools for monitoring disease progression are needed.
Unfortunately, a definite measure of disease progression is un-
available, as even a definitive diagnosis requires histopatho-
logic examination of brain tissue, an invasive procedure typi-
cally only performed at autopsy. Noninvasive methods can be
used to produce neuroimages and biospecimens which provide
evidence of the changes in the brain associated with AD. More-
over, biomarkers based on neuroimaging or biological data may
present a higher sensitivity to changes due to drugs or therapies
over shorter periods of time than clinical measures, making them
better suited tools for monitoring disease progression in clinical
trials. However, before biomarkers based on neuroimaging or
biological data can be useful in clinical trials, their evolution
over time needs to be well understood. The biomarkers which
change earliest and fastest should be used as inclusion criteria
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for the trials and those which change the most in the disease
stage of interest should be used for disease monitoring.

In this work, we focus on hippocampal volume, one of the best
established neuroimaging biomarkers for AD. Jack et al. (2010)
proposed a theoretical model for the evolution of hippocampal
volume, which was further discussed in Frisoni et al. (2010).
They hypothesize that hippocampal volume evolves sigmoidally
with changes beginning early and continuing into late stages
of the disease. This theoretical model needs to be validated,
before the use of hippocampal volume as a measure for disease
severity in clinical trials can be appropriately considered. Thus,
in the present article, we focus on the validation of Jack et al.’s
proposed model. Caroli and Frisoni (2010) and Sabuncu et al.
(2011) assessed the fit of parametric sigmoidal curves, and Jack
et al. (2012) considered a more flexible model based on cubic
splines with three chosen knot points. This last approach is the
most flexible among the three, but they all impose significant
restrictions which favor a sigmoidal shape. To provide strong
statistical support for the sigmoidal shape hypothesis, a flexible
nonparametric regression model is needed that would remove all
restrictions on the regression curve allowing the data to choose
the shape that provides the best fit and predictive properties for
unobserved values.

There are many methods for nonparametric regression, and
most standard approaches, such as splines, wavelets, or regres-
sion trees (Dimatteo, Genovese, and Kass 2001; Denison et al.
2002), achieve flexibility by representing the regression function
as a linear combination of basis functions. Another increasingly
popular practice is to place a Gaussian process prior on the
unknown regression function (Rasmussen and Williams 2006).
While these models are able to capture a wide range of regres-
sion functions, the assumptions on the distribution of the errors
about the mean is quite restrictive; typically, independent and
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identically distributed additive Gaussian errors are assumed, and
thus, these models are often referred to as semiparametric. In the
hippocampal volume study, we not only expect a nonlinear be-
havior for the evolution of the AD biomarker with age, but also
suspect the presence of multimodality, heavy tails, and evolving
variance in the error distribution due to variability in the onset of
the disease and unobserved factors, such as enhanced cognitive
reserve or neuroprotective genes. Indeed, in a semiparametric
analysis of the data, we observe a nonnormal behavior in the
errors that depends on the covariates, which raises suspicions
about the estimated regression curve. To correctly model the
data, a nonparametric approach for modeling the conditional
density in its entirety is needed. In this way, no specific struc-
ture is imposed on the regression function or error distribution,
so a fit confirming the hypothesized sigmiodal shape would
provide strong statistical support for the theoretical model.

In this article, we investigate the dynamics of hippocampal
volume as a function of age, disease status, and gender. To do so,
we construct a flexible and interpretable nonparametric mixture
model for the conditional density of hippocampal volume which
incorporates both continuous and discrete covariates. Simple ar-
guments regarding the interpretation of Bayesian nonparametric
regression mixtures lead naturally to regression weights based
on normalized sums. To overcome the difficulties in working
with the intractable normalizing constant, a novel auxiliary vari-
able Markov chain Monte Carlo (MCMC) scheme is developed.
The novel model and MCMC algorithm are applied to study the
behavior of hippocampal volume, and the results provide strong
support for the theoretical model.

The layout of the article is as follows. In Section 2, we
describe the model and provide its unique provision of inter-
pretability. In Section 3, we introduce the latent variables nec-
essary for estimating the model via MCMC methods. Section
4 describes the MCMC algorithm for posterior inference with
further details in the Appendix, and in Section 5, we present
a comprehensive simulation study outlining precisely how the
model works and what it is capable of achieving, particularly in
comparison to simpler semiparametric models. In Section 6, we
present the study of the Alzheimer’s disease data. In addition to
the detailed calculations required for the MCMC algorithm, the
Appendix also includes a discussion of parameter choices and
a sensitivity analysis.

2. THE REGRESSION MODEL

For independent and identically distributed observations, the
standard mixture model for density estimation is given by

fr(y) = / K(y|0)dP(0), ey

where K (-|0) is a parametric family of density functions defined
on Y and P is a probability measure on the parameter space ®.
In a Bayesian setting, this model is completed with a prior
distribution on the mixing measure P. A common prior choice,
the stick-breaking prior, assumes P is a discrete random measure
and can be represented as

0o
P = Z wj(ng s
J=1
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for atoms 6; € ©, taken iid from some probability mea-
sure Py, known as the base measure; and weights w; > 0,
such that ) W =1 (a.s.), constructed from a sequence
v; ~ Beta(¢y,j, &, j) withw; = v; ]_[j,<j(1 — vjr). The mixture
model (Lo 1984) can then be expressed as a countable convex
combination of kernels

fr) = w;K(yl6)).
j=1

For the covariate dependent density estimation problem in
which we are interested, the mixture model (1) can be adapted by
allowing the mixing distribution P, to depend on the covariate x
and replacing the density model K (y|0) with a regression model
K (y|x, 8), such as a linear model. Hence, for every x € X,

fr(ylx) = / K(ylx, 6)dPy(0).

Once again, the Bayesian model is completed by assigning a
prior distribution on the family (P, ),cx of covariate dependent
mixing probability measures. If the prior gives probability one
to the set of discrete probability measures, then

oo
Py =) wj(x)8,x). and

J=1

fe(3lx) =Y wi()K (ylx, 0;(x)), (@)

Jj=1

where 0;(x) € ©, and the w;(x) > 0 are such that Zj w;(x) =
1 (a.s.) for all x € X. This general model was introduced by
MacEachern (1999, 2000), who focused on the case when the
weights are constant functions of x, w;(x) = w;, defined in ac-
cordance with a Dirichlet process (DP). This simplified version
of the model is popular, as inference can be carried out using
any of the well established algorithms for DP mixture models
(see, e.g., Neal 2000; Papaspiliopoulos and Roberts 2008; Kalli,
Griffin, and Walker 2011).

Recent developments explore the use of covariate-dependent
weights. To simplify computations and ease interpretation,
atoms are usually assumed not to depend on the covariates. The
main constraint for prior specification, in this case, is the condi-
tion, Zj w;(x) = 1forall x € X, which is nontrivial for an in-
finite number of positive weights. The only technique currently
in use for directly defining the covariate-dependent weights is
through the stick-breaking representation, given by

wi(x) = vi(x) and for j > 1

w;(x) = v;(x) [ [ = vy ), 3)

J'<i

where the (v;(-)) are independent processes on X and indepen-
dent of the atoms, (6;). There are various proposals for the con-
struction of the v;(x): see, for example, Griffin and Steel (2006);
Dunson and Park (2008); Rodriguez and Dunson (2011); Chung
and Dunson (2009); Ren et al. (2011); or Dunson (2010) and
Miiller and Quintana (2010) for reviews of nonparametric re-
gression mixture models.

The stick-breaking definition poses challenges in terms of the
various choices that need to be made for functional shapes and
hyperparameters when defining the (v;(x)). The difficulties are
amplified by the lack of interpretation of the quantities involved.
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Moreover, combining continuous and discrete covariates in a
useful way is not straightforward. We, therefore, propose a dif-
ferent construction of the covariate-dependent weights, which
follows from an alternative perspective on mixture models. The
idea is to realize that, in the iid setting, each weight contains in-
formation about the applicability of each parametric component,
within the sample space Y. In a regression setting, covariate-
dependent weights are necessary because it is not reasonable
to assume that such importance is equal throughout the entire
covariate space X; rather, it depends on the value x. Since the
nature of such dependence is unknown, the uncertainty about it
should be incorporated through prior specification.
In the nonparametric regression mixture model

o0
fr 1) =D wi (K (ylx. 6)),
j=1
each covariate-dependent weight w;(x) represents the probabil-
ity that an observation with a covariate value of x comes from
the jth parametric regression model K (y|x, 6;). Thus, letting d
be the random variable indicating the component from which
an observation is generated, we have that w;(x) = p(d = j|x).
A simple application of Bayes’ theorem implies

pld = jlx) « p(d = j)p(xld = j),

where p(d = j) represents the probability that an observation,
regardless of the value of the covariate, comes from paramet-
ric regression model j; and p(x|d = j) describes how likely it
is that an observation generated from regression model j has a
covariate value of x. Therefore, p(x|d = j) can be defined to
reflect prior beliefs as to where in the covariate space the re-
gression model j will have the largest relative applicability. A
natural and simple way to achieve this is to define it through a
parametric kernel function K (x| ;) and with some prior on the
;. Uncertainty about the p(d = j) := w; is expressed through
a prior on the infinite dimensional simplex. Putting things to-
gether, and incorporating the normalizing constant, we have
that

w; K (x[y;)
Yo wi K (x|

where 0 < w; < 1 forall j and Zjo:l w; = 1.

Note that the conditional densities p(x|j) are not related
to whether the covariates are picked by an expert or sam-
pled from some distribution, which itself could be known or
unknown. They only indicate the prior belief about where,
in X, regression model j best applies. Moreover, the density
px) = ZCIX’:I P(j) p(x]j) does not correspond to the distribu-
tion from which the covariates are sampled, if indeed they are
sampled; it simply represents the likelihood that an observa-
tion has a covariate value of x. The key element that must be
defined is the kernel K (x| ;). If x is a continuous covariate,
a natural choice is the normal density function. In this case,
the interpretation would be that there is some central location
w; € X where regression model j applies best, and a parameter
7; describing the rate at which the applicability of the model
decays around p ;. On the other hand, if x is discrete, then a
standard distribution on discrete spaces can be used, such as the

“)

w;(x) =
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Bernoulli or its generalization, the categorical distribution. Even
if x is a combination of both discrete and continuous covariates,
it is still possible to specify a joint density by combining both
discrete and continuous distributions. This will be explained and
demonstrated later on in the article.

It is to be noted that the infinite sum in the denominator of
(4) introduces an intractable normalizing constant for which no
posterior simulation methods are currently available. Only finite
versions of this type of model have been introduced in the litera-
ture (see, e.g., Pettitt, Friel, and Reeves 2003; Mgller et al. 2006;
Murray, Ghahramani, and MacKay 2006; Adams, Murray, and
MacKay 2009), since simulation methods are available only for
the finite case. In the next section, we introduce a suitable set of
latent variables, that solves the infinite dimensional intractable
normalizing constant problem.

3. THE LATENT MODEL

The aim of this section is to reexpress the model in terms of
latent variables, which are essential for Bayesian inference. For
asample ((y1, x1), - .., (Yu, Xn)), the likelihood for the proposed
model is given by

n

feuanlx) =[] Do wic) KGilxi, 0|, )

i=1 \ j=1

with covariate dependent weights given by expression (4). The
infinite sum in the denominator constitutes an intractable nor-
malizing constant, which makes inference infeasible. However,
through a simple trick, which relies on the series expansion,

o0
Z(l—r)kzr*‘, for0 <r < 1, (6)
k=0

we can move the infinite sum from the denominator to the nu-
merator, thus making inference possible, following the intro-
duction of auxiliary variables.

To illustrate the ideas with a simplified notation, we start by
considering the likelihood of a single data point. We assume
that the first g elements of x represent discrete covariates, each
xj, taking values in {0, ..., Gy}, for h=1...,q; the last p
elements of x represent continuous covariates. In this case, we
let

K(ylx,6;) = N(y|XB;, 07),

q 4
K(xly)) = [ [ CatGenlpjn) [ [N(arglirin. 7,").

h=1 h=1

where 0; = (Bj,0;), V¥;=(pj,u;,7), X =(1,x); and

Cat(-| pp) represents the categorical distribution,

G,
100=
Cat(xp|pop) = H ,Oh,(;‘ 9,
§=0

For simplicity, in the above expression we have t; = 7 for all j,
but this restriction may be removed with some realistic assump-
tions on t;.
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The likelihood of the single data point (y, x) may be written
as

— I 5 K YK 0
fp(ylx)—@j;w] ) KO [ x,6)),

where
00 q+p
r) =Y w; K&y Ky =[] KGalwn:
j=1 h=1
and
KCenl¥rjn)
G,
h=1,...,q

1(xn=g)
l_[ 'Oh,g]

1
exp{—z‘fh—q(xh —Mj,h—q)z} h=qg+1,....q+p.

Notice that we have redefined the kernel function K(x|v;)
by canceling the precision term t from the normal density,
which appears both in the numerator and the denominator of the
normalized weights expression. In this way, we guarantee that
0 < r(x) < 1forallx € X, sowe can apply the series expansion
(6) to write

r k

1 o.¢] o0
@2; 1—;ij(x|¢j)
o0 :OO k
=Y | D wil —K&xly) |
k=0 | j=1

where the last equality relies on the fact that ZC]’O:, w; =1
almost surely. This trick allows us to move the infinite sum from
the denominator to the numerator and equivalently express the
likelihood as

fry1x) =Y wiK(x|y) K(y|x,0))

j=1
o0

< Y Y wi =Kl | . D)

k=0 | j=1

k

We now introduce a latent variable k taking values in
{0, ..., oo}, where the joint density of (y, k) given x and the
model parameters is

fryklx) =" w;K(x[¥;) K(y|x,6))

Jj=1
k

x| Y wid = Kx[y;)

j=1

This allows us to deal with the mixture in the usual way, by
introducing a latent variable d to indicate the mixture component
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to which a given observation is associated. Thus, we obtain

fr(y, k. d|x) =wgK(x|yg) K(y|x,04)
k

x| wil = K(x[y;)

J=1

For the remaining sum, we have the exponent k to consider.
We first rewrite this term as the product of k copies of the infinite
sum,

fr(y. k. d|x) = waK(x[q) K(y | x,0a)

k oo
X szj,(l — K(x[¥;)),

=1 j=1

and then, introduce k latent variables, Dy, ..
the full latent model

., Dy, arriving at

fr(y.k,d, D|x) = waK(x[a) K(y | x,0a)

k
< [Two (1 = Kxlyp)).

=1

It is easy to check that the original likelihood (7) is recovered
by marginalizing over the d, k, and D = (Dy, ..., D).

For a sample of size n > 1 we simply need n copies of the
latent variables. Therefore, the full latent model is given by

FeOtns Ky dions Dinl x1)=] Jwa, K (eil¥a) K (i | 51, 6a,)
i=1
. ®)
[ [wn, (1-K@&ilyp,).
=1

Once again, we note that the original likelihood (5) can be easily
recovered by marginalizing over d,.,, ki.,, and D;.,. However,
the introduction of these latent variables makes Bayesian infer-
ence possible, via posterior simulation of (w;), (8;), and (),
as we show in the next section.

4. POSTERIOR INFERENCE VIA MCMC

A prior for P, defined by a prior specification for the
weights (w;) and the parameters, (6;) and (/;), completes the
Bayesian model. Our focus for the prior on the weights (w;)
is on stick-breaking priors (Ishwaran and James 2001). There-
fore, for some positive sequence (¢1,;, £,;)7, and independent
v; ~ Beta(¢y, j, {»,;) variables, we have

w; =vy, andforj>1, w;=v; l—[(l —vj).
J'<J

Some important examples of this type of prior are the Dirich-
let process, when ¢y ; = 1 and & ; = ¢ for all j; the Poisson-
Dirichlet process, when ¢; ; =1 —2¢; and & ; = & + j& for
0 <¢; < land & > —¢; and the two parameter stick-breaking
process, where ¢1 ; = ¢; and &, ; = ¢, for all j.

To complete the prior specification, the (6;, ¥;) are iid from
some fixed distribution Fy and independent from the (v;). We
define Fj through its associated density fj, which in this case is
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defined by the product of the following components:
fo(Bj»o7) =N(Bj | Bo, 07 C~")Ga(1/07 | a1, @2);

p
Joluj, t) = HN(Mj,h | ons (twen)"Ga(ty | ap, by);  and
h=1

q
Jolpj) = HDif(,Oj,h [ V).

h=1

Together with the joint latent model, this provides a joint density
for all the variables which need to be sampled for posterior
estimation, that is, (w;, 6;, ¥;, k;, d;, Dy ;).

However, there is still an issue due to the infinite choice
of (d;, D;;), which we overcome through the slice sampling
technique of Kalli, Griffin, and Walker (2011). Accordingly, to
reduce the choices represented by (d;, D; ;) to a finite set, we
introduce new latent variables, (v;, v;;), which interact with the
model through the indicating functions 1(v; < exp(—£d;)) and
1(v,; < exp(—& Dy ;)), for some & > 0. Hence, the full condi-
tional distributions for the index variables are given by

P(d; = jI---) ocwjexp(§j) K(xi[y;)K(yi | xi, 05)
x1(1 = j = Jp),
P(Dyi = j|---) ocwjexpj)(1 — K(xi|¥;))
x U1 < j =< Jp0),

where J; = |—£ 'logv;|; Ji; = |—& 'logv;;]. Note that,
at any given iteration, the full conditional densities for the vari-
ables involved in the MCMC algorithm do not depend on values
beyond J = max;;{J;, J;;}, so we only need to sample a finite
number of (¥, 6;, w;).

(w j)]J.zl can be updated at each iteration of the MCMC algo-
rithm in the usual way, that is, by making w; = v; and, for j > 1,
w; =v; [[;_;(1 —v;), where (v;) are sampled independently
from Beta distributions with updated parameters (specified in
the Appendix). The variables involved in the linear regression
kernel, that is, (B;, a}), are also updated in the standard way.
Since the normal-inverse gamma base measure is conjugate, we
simply need to sample from a normal-inverse gamma distribu-
tion with updated parameters, detailed in the Appendix.

The full conditional distribution for (/; )jj.=1 seems somewhat
more complicated, due to the additional product term in the la-
tent model (Equation (8)), involving the latent variables (k;) and
(D; ;). However, such a product can be easily transformed into
a truncation term, by the introduction of additional auxiliary
variables. Thus, posterior simulation for (y j)le is achieved
by sampling from standard truncated distributions with updated
parameters, which can be easily calculated due to the choice of
conjugate base measure. The details of this procedure, as well as
the resulting updated parameters and truncations are presented
in the Appendix. At this point, we only mention that the in-
troduction of the additional variables does not pose a problem,
since they are all conditionally independent given (1 )le ,and
hence can be sampled in parallel, using the “parfor” routine in
Matlab.

Finally, for the update of each k;, we use ideas involving a
version of reversible jump MCMC (see Green 1995) introduced
by Godsill (2001), to deal with the change of dimension in the
sampling space. We start by proposing a move from k; to k; + 1

with probability 1/2, and accepting it with probability

J
min { 1, ij(l — K(xi|¥;))

j=1

In this case, we need to sample the additional index Dy, ;, and
we choose Dy, 11,; = j with probability proportional to w;(1 —
K(xi|y;)), for j =1, ..., J. Similarly, if k{; > 0, a move from
k; to k; — 1 is proposed with probability 1/2, and accepted with
probability

-1

J
min { 1, ij(l—K(xilllfj))
=1

It is, therefore, possible to perform posterior inference for
the nonparametric regression model proposed via an MCMC
scheme applied to the latent model. We have successfully im-
plemented the method in Matlab (R2012a), and present some
results in the next section. In the following examples, the aim
is prediction and predictive density estimation, which under the
quadratic loss are, respectively, given by

E[Yn+1 |y]:nv xl:n+]]

o0
=E ij(xn-‘rl)xn-klﬁj‘yl:n,xl:n , 9)
j=1
f(yn+l |y1:n’ xl:n+l)
—OO
=E| 3w NG X118, 07) [y, 21 |+ (10)

j=1

where X, 11 = (1, x,/l 1) and the expectation is taken with re-
spect to the posterior distribution of (w;, 8;, ¥;). MCMC esti-
mates for these quantities are used, as specified in the Appendix.

5. SIMULATION STUDY

To demonstrate the ability of the model to recover a complex
regression function with covariate dependent errors, we simu-
late n = 200 data points (depicted in Figure 1(a)) through the
following formula:

xi 2 N([0, 2.5%),

| ind N ‘ 5 1 +oex xi—6 2
ilxi ~ N | ———, |+ .
Y T +exp(—x) 2 7P\ 73

Our model is given by

[e ]
fryl) =Y w;)N(y|XB;,07), with
j=1
w; exp(=7/2(x — ;)%
D5y wy exp(=t/2(x — 11j1)?)
The prior for (w;) and (6;, ¥;) is described in Section 4. The

prior choice for the (w;) is a Dirichlet process with unit mass,
thatis, {1,; = £»,; = 1, and for the prior of (6;, ¥;), we set

Bo=(5/2,5/8); C~'=diag(4, 1/4);
nwo=0; c=1/8;

w;(x) =

ap=1;, ary=1,
a=1;, b=1.
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(a) Simulated data
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-4

-5 0 5 10
X

(b) Predicted regression function

Figure 1. The left panel depicts the data and the true regression mean. The right panel depicts the predicted regression function (in blue) for
a grid of new covariate values, along with 95% pointwise credible intervals; the black line represents the true mean function. (a) Simulated data.

(b) Predicted regression function.

An explanation for the choice of these quantities can be found
in the Appendix, along with a sensitivity analysis. Inference is
carried out via the algorithm discussed in Section 4 with 5,000
iterations after a burn-in period of 5,000.

Figure 1(b) depicts, in blue, the estimated regression func-
tion for a grid of unobserved x values, along with 95% point-
wise credible intervals. The true regression function is shown
in black. For large values of x we can observe a deterioration of
the curve estimate, which is pulled down by some extreme ob-
servations. This is to be expected due to a lack of data for large
x-values. Indeed, with an increased sample size, this behavior is
corrected (analysis not shown).

The flexibility in estimating the regression function relies
heavily on the posterior distribution of the covariate-dependent
weights. The left panel of Figure 2 depicts the partition with

(a) Partition with highest probability

1
09r
0.8
0.7r
06
E ost

highest estimated posterior probability, with data points col-
ored by component membership. The right panel of Figure 2
shows a posterior sample of the covariate-dependent weights as
a function of x, given this partition.

It is important to observe that aposteriori the weights are
able to peak close to one in areas of high applicability of
their associated linear regression models and decay smoothly
or sharply, as needed, when the covariates move away from this
area. For example, for values of x around —3 (green cluster),
a single linear regression model dominates; for values around
3 (cyan cluster), the dominance is less clear; while, for values
around 0 a combined effect of two linear models is indicated
by the dependent weights. We emphasize that Figure 2 clearly
shows that the kernels in the covariate space are not modeling
the density of x, which is a simple Gaussian, but reflect the

(b) Covariate-dependent weights

Figure 2. The left panel depicts the partition with the highest posterior probability, where the data are colored by component member-
ship. The right panel depicts a sample of the covariate-dependent weights associated to this partition. (a) Partition with highest probability.

(b) Covariate-dependent weights.
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(b) Estimated conditional densities

Figure 3. The left panel depicts a heat plot of the true conditional densities f(y|x) for a grid of covariate values; the right panel corresponds
to the estimated conditional densities. In both cases, the corresponding mean curve is shown, along with the data. (a) True conditional densities.

(b) Estimated conditional densities.

regions in the covariate space where each linear regression
model applies.

We are also able to produce estimates of the predictive densi-
ties, that is, the entire conditional density f(y|x) at any value of
x in the covariate space. Results are shown in Figure 3(b). The
estimated densities are represented through heat maps, where
a darker color indicates higher density values. The estimated
densities can be compared with the true conditional densities,
shown in Figure 3(a). As is expected, the estimated variance is
higher than the true for small values of x where less data are
observed. However, it is clear from the picture that the change,
with x, of the variance of y|x is recovered by the model.

Finally, we consider a comparison with semiparametric mod-
els. Figure 4 plots the predicted regression function for a grid
of new covariate values for two competing models, namely, the
cubic spline (CS) and the Gaussian process (GP) models, im-
plemented in the crs package in R and the GPML toolbox in
Matlab, respectively. The crs package includes an automatic
tool which selects the “best” spline model over a range of de-
grees, number of knot points, and the choice of equally spaced
knots or knots placed at the quantiles. When restricted to cu-
bic splines (Figure 4(a)), the selected spline model contained
six knot points placed at the quantiles. Without this restriction,
the selected spline model had a degree of 7 with eight knot
points placed at the quantiles. Results in this case are not shown
since the model was outperformed by the cubic spline restricted
version under the performance metrics that we consider. The
Gaussian process model (Figure 4(b)) assumed a squared expo-
nential covariance function.

For these semiparametric models, the poor mean function
predictions for large values of x with overly narrow confidence/
credible intervals are clearly observed in Figures 4(a) and 4(b).
It is important to note that these simpler models assume iid
standard normal errors, an assumption that is clearly violated
in this case, as can be observed in the histograms of the cor-
responding standardized residuals obtained after fitting these
models (Figures 4(c) and 4(d)). This raises questions about the
use of these models for this dataset, particularly for prediction.

Table 1 provides a numerical comparison of the models with
respect to some commonly used distance measures between the
true and estimated regression curves, as well as between the true
and estimated conditional densities. In terms of fit (error calcu-
lated on observed covariate values), the models are quite com-
parable, although measures, which are more sensitive to outliers
(L, and max(L)), are improved for the proposed model. How-
ever, in terms of prediction (estimation for unobserved x values),
our proposed nonparametric model with normalized weights is
superior, as would be expected given the nonnormality of the
errors.

To summarize the simulation study, it is important to model
f(y|x) in its entirety as a density rather than just a mean, for
example. It is also important to model the weights as a function
of x. While we do not believe other Bayesian nonparametric
models could improve on things, but could do as well as our
model, the model proposed here does have full interpretation
for the parameters.

6. ALZHEIMER’S DISEASE STUDY

Hippocampal volume is one of the best established and
most studied biomarkers because of its known association with

Table 1. Model comparison: NW (normalized weights) stands for our

model
Estimated item Error measure CS GP NwW
Regression mean
Fit L 0.08 0.08 0.10
L, 0.44 0.41 0.38
Predictive L 0.98 0.88 0.79
L, 2.33 1.95 1.46
Conditional densities
Fit avg(Ly) 015 030 022
max(L)) 5.12 1.79 1.25
Predictive avg(L)) 1.07 070 025
max(L)) 9.81 1.79 1.25
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(d) GP

Figure 4. The predicted regression function (in blue) and 95% pointwise confidence (spline) and credible (GP) intervals for a grid of new
covariate values along with true mean function in black for the cubic spline and GP models, respectively, and histograms of the standardized
residuals for restricted ranges of covariate values. (a) Cubic spline, (b) GP, (c) cubic spline, (d) GP.

memory skills and relatively easy identification in SMRI. In two
recent papers, Jack et al. (2010) and Frisoni et al. (2010) dis-
cussed a hypothetical model for the dynamics of hippocampal
volume as a function of age and disease severity. If confirmed,
this model would have important implications for the use of
hippocampal volume to measure the efficacy of treatments in
clinical trials.

The clinical stages of the AD are divided into three phases
(Jack et al. 2010): the presymptomatic phase, the prodromal
phase, and the dementia phase. During the presymptomatic
phase, some AD pathological changes are present, but patients
do not exhibit clinical symptoms. This phase may begin possibly
20 years before the onset of clinical symptoms. The preprodro-
mal stage of AD is known as mild cognitive impairment (MCI);
patients diagnosed with MCI exhibit early symptoms of cogni-
tive impairment, but do not meet the dementia criteria. The final
stage of AD is dementia, when patients are officially diagnosed
AD. Jack et al. (2010) and Frisoni et al. (2010) hypothesized
that hippocampal volume evolves sigmoidally over time, with

changes starting slightly before the MCI stage and occurring
until late in dementia phase. The steepest changes are supposed
to occur shortly after the dementia threshold has been crossed.

To provide validation for this model, we study the evolution
of hippocampal volume as a function of age, gender, and dis-
ease status. Data were obtained from the Alzheimer’s Disease
Neuroimaging Initiative database which is publicly accessible
at UCLA’s Laboratory of Neuroimaging (see Appendix A). The
ADNI database contains neuroimaging, biological, and clini-
cal data, along with summaries of neuroimages, including the
volume of various brain structures. The dataset analyzed here
consists of the volume hippocampus obtained from the sMRI
performed at the first visit for 736 patients. Of the 736 patients
in our study, 159 have been diagnosed with AD, 357 have MCI,
and 218 are cognitively normal (CN). Figure 5 displays the data.

As discussed in Jack et al. (2010), we not only expect nonlin-
earity in the regression function, but also suspect the possibility
of nonnormal and covariate-dependent errors, for example, due
to the presence of unobserved neuroprotective genes. Indeed, in
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Figure 5. Hippocampal volume plotted against age. The data are
colored by disease status with circles representing females and crosses
representing males.

a preliminary semiparametric analysis where the errors are as-
sumed to be iid normal, we find some peculiarities in the model
fit. Figures 6 and 7 display the estimated regression function and
histogram of the standardized errors within each combination of
sex and disease status for the semiparametric cubic spline and
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in the crs and kernlab packages in R. Notice that both of these
models tend to overfit the data to overcome the rigid assumption
on the errors. Furthermore, we find some abnormal behavior in
the errors that depends on sex and disease status. As we learned
in the simulation study, this odd behavior in the fitted errors for
the semiparametric models raises doubts about their use for this
dataset and can be a signal for poor prediction.

To fully capture the dynamics of the data, a nonparametric
approach which flexibly models both the regression function
and the error distribution is needed. To this aim, we consider the
model developed in this article, specifically, the infinite Gaus-
sian kernel mixture model with covariate-dependent weights
given by

2 Gy Ly=¢
w; Hh:l ]_[gio pjﬁ,ge exp(—7/2(x3 — Mj)z)
xh=g

2 1 ’
Yoo wi [Tz H?Lo 0 €Xp(=T/2(x3 — 1))

wj(x) =

where G| = 1 (x; represents gender) and G, = 2 (x, represents
disease status). Note that here age (x3) is a real number mea-
suring time from birth to exam date and thus, is treated as a
continuous covariate.

The prior distribution for w; and (6;, ;) is described in
Section 4. The prior parameters for w; are ¢, ; =1 and §, ; =
1, corresponding to a Dirichlet process prior with a precision
parameter of 1. For the prior of (6;, ¥;), we set

Bo=(8,—1,—1,—1/4); C~' = diag(4, 1/4, 1/4, 1/50);
ar=1 =1 y=1; y=~011"5 pn =725

Gaussian process models, respectively, which are implemented c=1/4; a=1;, b,=1.
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Figure 6. Cubic spline model: (a) Estimated regression function and (b) histogram of the standardized errors as a function of sex and disease

status.
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Figure 7. Gaussian process model: (a) Estimated regression function and (b) histogram of the standardized errors as a function of sex and

disease status.

See the Appendix for an explanation of these parameter choices.
Inference is carried out via the algorithm discussed in Section 4
with 23,000 iterations after a burn-in period of 7,000.

Figure 8 displays the estimated mean regression function for
a grid of ages with all possible combinations of disease status
and sex. Interestingly, we observe a confirmation of the hy-
pothesized sigmoidal evolution of hippocampal volume with
increasing age. The estimated mean function coincides with the
point predictor under the quadratic loss function. In this sense,
cognitively normal subjects are predicted to have highest val-
ues of hippocampal volume at all ages, and MCI patients are
predicted to have higher values of hippocampal volume at all
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(a) Male patients

ages when compared with AD patients. This indicates that hip-
pocampal volume may be useful in disease staging during both
the MCI and AD phases. With careful examination of Figure 8,
we observe that CN patients are predicted to show the most
gradual decline with increasing age, while AD patients display
the greatest. Notice that, as expected, females are predicted to
have lower values of hippocampal volume. We should comment
that there is little data for the subgroup of CN subjects under
60, which reflects on the greater uncertainty in the estimation.
Figure 9 displays the heat map of conditional density esti-
mates, that is, the predictive densities, for a grid of new ages
between 50 and 90 and all combinations of disease status and

Hippocampal Volume
N Wb~ OO N 00O © O

70 80 90

Age

60

o=
o

(b) Female patients

Figure 8. Estimated mean hippocampal volume as a function of age, disease, and sex. The curves are colored by disease status with dashed
lines representing 95% pointwise credible intervals around the estimated regression function.
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Figure 9. Heat map of conditional density estimates, that is, predictive density, for new covariates with a grid of ages between 50 and 90 and

all combinations of disease status and sex.

sex. In a clinical trial setting, the preference is for reliable out-
come measures, that is, biomarkers with small variability. In
general, we observe that variance decreases with increasing age,
indicating that hippocampal volume is more reliable for elderly
patients. The difference is slightly more pronounced for females
as opposed to males. In particular, hippocampal volume is pre-
dicted to have a large variability for young females across all dis-
ease stages, with the largest for young CN females (the subgroup
with no data). Instead, for older females, the variance is much
smaller for all disease stages. When comparing males across
disease status, we notice that young CN patients are predicted
to show a large variability compared with young MCI and AD
patients, while old MCI patients are predicted to show the largest
variability when compared with their CN and AD counterparts.
This figure clearly illustrates a feature which provides a strong
motivation for our model, rather than a simpler one which as-
sumes, for example, constant variance and skewness. The data
suggest that it is important to model mean, variance, skewness,
and possibly also kurtosis as being dependent on the covariate

values. Hence, a standard model such as y = m(x) +o¢, ¢ i
N(0, 1) will fail to reproduce the results we have obtained for the
more general f(y|x) model. Even though the model is neces-
sarily more complicated, all the elements in it are interpretable.

7. DISCUSSION

In this article, we have described and implemented a fully
Bayesian nonparametric approach to examine the evolution of

hippocampal volume as a function of age, gender, and disease
status. We find that with increasing age, hippocampal volume is
predicted to display a sigmoidal decline for cognitively normal,
MCI, and AD patients. We also observe the most gradual de-
cline for CN patients, while AD patients are predicted to show
the steepest decline. As the approach was nonparametric, no
structure was assumed for the regression function, yet our re-
sults confirm the hypothetical dynamics of hippocampal volume
proposed by Jack et al. (2010). This provides strong statistical
support for their model of hippocampal atrophy. A compari-
son with two commonly used semiparametric models suggest
the superiority of the proposed model for prediction, that is,
estimation of the regression curve and conditional densities
f(y]x) for unobserved covariate values. Future work in this
application will involve examining the dynamics of various
biomarkers jointly, which could be accomplished by replacing
the normal linear regression component for y with a multivari-
ate linear regression component. Another important future study
will consist of combining the cross-sectional data with the lon-
gitudinal data for each patient.

In our analysis of the dynamics of hippocampal volume,
we have developed a novel Bayesian nonparametric regression
model based on normalized covariate-dependent weights. The
important contributions of this approach are a natural and inter-
pretable structure for the weights, a novel algorithm for exact
posterior inference, and the inclusion of both continuous and
discrete covariates. We have focused on a univariate and con-
tinuous response, but the model and algorithm can be easily
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extended to accommodate other types of responses by, for ex-
ample, replacing the normal linear regression component for y
with a generalized linear model. Future work will consist of
examining theoretical properties of this model.

APPENDIX A

The ADNI was launched in 2003 by the National Institute on Ag-
ing (NIA), the National Institute of Biomedical Imaging and Bioengi-
neering (NIBIB), the Food and Drug Administration (FDA), private
pharmaceutical companies, and nonprofit organizations, as a $60 mil-
lion, 5-year public-private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI), positron
emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the pro-
gression of mild cognitive impairment (MCI) and early Alzheimer’s
disease (AD). Determination of sensitive and specific markers of very
early AD progression is intended to aid researchers and clinicians to de-
velop new treatments and monitor their effectiveness, as well as lessen
the time and cost of clinical trials. The Principal Investigator of this
initiative is Michael W. Weiner, MD, VA Medical Center and Univer-
sity of California-San Francisco. ADNI is the result of efforts of many
coinvestigators from a broad range of academic institutions and pri-
vate corporations, and subjects have been recruited from over 50 sites
across the U.S. and Canada. The initial goal of ADNI was to recruit
800 adults, ages 55 to 90, to participate in the research, approximately
200 cognitively normal older individuals to be followed for 3 years,
400 people with MCI to be followed for 3 years, and 200 people with
early AD to be followed for 2 years. For up-to-date information, see
www.adni-info.org

APPENDIX B

Section 3 details. We specity the full conditional distributions for the
MCMC posterior sampling scheme used for inference on the latent
model constructed in Section 3.

The sampling of the weights is obtained via the stick breaking defi-
nition, where the (v;) must be independently sampled from the corre-
sponding full conditionals,

f@jl-)=Be(j+n;+ N, &y +nt + N,
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where

=1 =j) N, _Zl(Dzl =)
=51 > j) ZI(DH > J)-

Each of the (8;, sz) can be sampled independently across j, from the
full conditional density

fBy 07

where

N+

) =N(B; | B;.07C;HGa(1/07 | &, &),

. R 1

Gy =ontn/z Gy =arto(y,

pi=Cl(Ch+ Xy
_ Al

Wi =1 - X,C; X

X, B Wy,
éj =C+ X;va

~ X, Bo);

Here, X ; denotes the matrix with rows givenby X; = (1, x;) ford; = j;

y . is defined analogously, and I; denotes the identity matrix of size n;.

We now show how the introduction of an additional set of latent
variables enables the update of the (¥; )/ i1> a8 explained in Section 4,
and specify the resulting posterior densities and truncation regions.
Observe that, for any integer H and vector (ci, ..., cg) € (0, 1), the

following identity holds

1_1‘16,1 2/

H[uhl(Uh < cn) + (—up)1 (U, > ¢)]dU,
ueU v O v

where U = (Uy,...,Uy), u = (uy,...,uy) and U is the set of H-
dimensional {0, 1} vectors of which at least one entry is 0. We can,
therefore, introduce latent variables (u;; 4, Ui;s), for i =1,...,n,
l=1,...,ki and h=1,...,q9 + p, to deal with the terms (1 —
]_[h K (x; 4|¥;,)) in the latent likelihood (Equation (8)). The full con-
ditional density for (y; )]j.:l is thus extended to the latent model

n q+p

3) o<1'[fo<w,>]'[ [T &m0

i=1 h=1

SOeg Auign}, (Uiin}l -

ki

[ti0n 1 WUign < Kigw) + (U= i)l Uirs > Kign)]
1=1

Table Al. Sensitivity Analysis: Comparison of fitted and predictive errors in the regression mean and conditional density for varying choices of
the prior parameters

Error NW NW NW NW NW NW NW NW
Estimated item measure NW lm 1+ m L c! 4 C! ta Lt 4! 1t a
Regression mean

Fit L 0.10 0.10 0.10 0.11 0.09 0.11 0.11 0.10 0.11
L, 0.38 0.38 0.38 0.37 0.38 0.38 0.36 0.37 0.39
Predictive L 0.79 0.79 0.79 0.76 0.81 0.80 0.75 0.76 0.80
L, 1.46 1.46 1.45 1.38 1.57 1.46 1.38 1.43 1.48

Conditional densities
Fit avg(L)) 0.22 0.22 0.25 0.24 0.20 0.26 0.24 0.22 0.23
max(L,) 1.25 1.25 1.25 1.23 1.23 1.30 1.12 1.18 1.29
Predictive avg(L)) 0.25 0.25 0.28 0.27 0.22 0.29 0.27 0.25 0.26
max(L;) 1.25 1.25 1.25 1.24 1.24 1.30 1.14 1.20 1.29

NOTE: The first two prior parameter modifications explore decreasing and increasing the mass parameter, m, of the Dirichlet process to 0.5 and 5. The following prior parameter changes

explore decreasing and increasing the variability of the local regression coefficients (with | C

~! corresponding to C~! = diag(1.5, 1/10)and 1 C~

! corresponding to C~! = diag(10, 1));

decreasing the variability of the precision around the local regression lines (with 1 « corresponding to o} = 2, a, = 2); decreasing and increasing the variability of the locations of the

components in the x-space (with | ¢!

components in the x-space (a; = 2).

corresponding to ¢! =4 and 1 ¢! corresponding to ¢~

! = 16); and increasing the location and variability of the precision associated to the
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where K;;, = K(x;4|¥p,,,»), from which the original conditional den-
sity can be recovered by marginalizing over the (u; .5, U;.1)-

The latent variables (u;; 4, U;; ) can be sampled from their full
conditional density by first observing that they are independent across
i=1I,...,nand/ =1, ..., k;. Foreach i, [, the variable u;; is a (¢ +
p)-dimensional vector of zeros and ones with at least one zero entry.
There are 277 — 1 such vectors, and for any u in this set, the update
must be done according to the following distribution:

q+pr

Pui;=ul--- )CX]—[ [MhK(Xi,hWD,,,,h) + (I —uy)(1 _K(xi.hleL,,h))] .

h=1

Conditional on u; ;, the latent variables U; ; , forh =1, ...
independent and uniformly distributed in the region

, P+ q are

[K(xi,h‘wDu,h)(l - Mi,/,h), K(Xi.h|¢D,,l,h)ui""’] .

Therefore, the additional variables do not pose a problem for posterior
simulation. Furthermore, the introduction of these new variables trans-
forms the latent term, introduced to deal with the intractable normaliz-
ing constant, into a product of truncation terms which is multiplied by
the usual posterior density for the nonparametric mixture.

We first consider the update of the (p j)_f= 1» which is achieved
by sampling each p;;, independently from a truncated Dirichlet
distribution,

Sjnl ) o< Dir(oju | Vi) 1(ojn € Rjn),
where  Ping = Ving + Z 1(xip = 8).

di=j
The truncation region for each of the (p j)_{zl is given by
Riw=1{p (0, 1)Gn e < Pg < r;'h,g, g=1,...,Gy}

andforg =0...,Gy,

Ting = Max (Uil i = g) : Diy = jouzgn =1},
. 1(xin=g) . .
Fing = min {Ui.l,hl tDiy =iy = 0} .

We then consider the (u;, Tj)j]‘:p Recall that 7; = 7 for every j,
so we update this variable by sampling each 7, independently from a
truncated gamma density,

f@| ) o Ga(zy | ay, by)1(zy € T)),

where

R A 1 ¢
ay=a,+J/2 and b, =D, + 3 ;(xi,h-%—q — W)

L J
+§Ch Z(M/,h — pon)

j=1

The truncation region for each 7, is an interval 7, = (7, ‘L'th ), where

_ —210g Ui 1 h1q .
T, =maxy——————— [Uing =0,
(Xih4g — MDy )
. —2log Ui n+
'L';— = min {—lqz Uil g = 1¢.
(Xiptg — l’vD,;;,h)

We then sample each p;;, independently from a truncated normal

FGuinl ) < NGejn | fins (taéin) D1 (wjn € Ajp),

where

1
HLjn = i Chlbon + E Xintqg |5 Cjn=Cn+nj.
Jih

di=j

489

The truncation region for each of the u; j, is an intersection of sets,

A= (") A
D,

i1=J

where each A;;  is defined in terms of the intervals,
—21og Ui nt —2log Ui /n+.
Lijn = (xi,h+q — | Xy % ,
h h

as A,‘J,h =1iin when Uil ht+p = 1,and Ai.l,h = IiL:_/',lz when Uil h+p = 0.
Finally, to improve the mixing of the algorithm we applied the label
switching moves introduced by Papaspiliopoulos and Roberts (2008).
The Markov chain scheme detailed here and explained in Section 4,
produces posterior samples (wj., 9; , 1//;) fors =1,...,S, which can
be used to estimate the regression mean (9) and predictive density (10)
via
s
E[Yn+l |y1:nv xl:n+l] ~ Z Z w;(-anrl)Xn_Hﬂjy
s=1 j=1
s g
FGuat 1Yt s Y Y wiC)ON(YIX, 8. 07),

s=1 j=1
where

wi K (X 11¥75)
Sl wh K (X [9)

wj‘(xn-f—]) =

Prior Specification and Sensitivity Analysis

We discuss the specification of the prior parameters in Sections 5 and
6 and provide a sensitivity analysis with respect to the prior parameters
of the simulation study, where a comparison of the results to the true
data-generating model is possible. For both examples, based on a visual
analysis of the dataset and prior knowledge, we were able to determine
the maximum range for the parameters, which was then used to select
the prior parameters.

We first consider the simulated dataset analyzed in Section 5. To fit
the scatterplot of the data, the local linear components must be allowed
to have a slope between [0, 5/2] and an intercept between [0, 5]. Thus,
we chose to center the prior for the regression kernel parameters on
Bo =(5/2,5/4) with a variability 4 and 1/4 for the intercept and
slope, respectively, thus allowing them to cover the specified range.
The variance o around the local regression lines should range between
[1/4, 4], and the choice of a inverse gamma prior with parameters (1, 1)
is sufficiently diffuse to cover that range. Since most of the observed
covariates are concentrated in the interval [—5, 5], we chose to center
the covariate-related location parameters on py = 0 with a variability
increased by a factor of 8 with respect to the component variability, thus
making ¢ = 1/8; the precision 7 linked to the range of applicability of
each regression kernel in the covariate space is given a gamma prior
with parameters (1, 1). These choices reflect the fact that true model
can be approximated by dividing the x-space into regions (with little
overlap) of moderate range with a normal linear regression component
within each region.

For the ADNI dataset, many studies have shown that hippocampal
volume shrinks with age with greater decreases for diseased patients.
A sensible range for the slope, as observed in the scatterplot of the
data, is [—1/2, 0], that is, between a minimum of no shrinkage and a
maximum decrease of 0.5 cm® in 1 year. We center, therefore, the prior
for the slope on —1/4 with a variability of 1/50 to cover this range.
We chose to center the intercept on 8 cm?®, as it reflects the average
hippocampal volume of cognitively normal males, with a variability of
4 to cover the range of intercepts that we could anticipate. Women tend
to have lower brain volume than men, and a range of [—2, 0] reflects
the belief that hippocampal volume could be equal or up to 2 cm? less
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for women and men of the same age and disease status; the slope of
the gender indicator is centered on —1 with a variability of 1/4. We
assume that when compared to cognitively normal subjects of the same
age and gender, MCI patients may have a minimum of no decrease
in hippocampal volume to a maximum decrease of 2 cm?®, while AD
patients compared to cognitively normal subjects of the same age and
gender have a minimum of no decrease and a maximum decrease of 4
cm?; the slope of the AD indicator is centered on —1 with a variability
of 1/4. Finally, we selected vague uniform prior to describe prior
information about the regions where the components best apply in the
discrete x-space. In the continous x-space, the conjugate normal gamma
prior was centered on the average age of 72.5 with parameters (1, 1)
for the precision and the variability of locations relative to the range
of best applicability was increased by a factor of 4; this was chosen to
encourage fairly well-separated x-regions of moderate range.

Rather than using a hyper-prior for the precision parameter of the
Dirichlet process, we fix it to be {, ; = 1 in both examples. Due to
the unidentifiability of the weights, such a practice corresponds to the
standard solution of fixing the location of one of the variables for
models with identifiability issues. The unidentifiability of the weights
arises from the fact that they are given by w;(x) oc w; K (x|¢;). We
resolve this in the usual way by fixing the locations of the (w;) rather
than assigning a hyper-prior to the precision parameter. Note that the
model is fundamentally different from the usual DP mixture model,
where the weights corresponding to each component in the mixture
are simply (w;), without any multiplicative factors. Hence, in the DP
model the use of a hyper-prior for the precision parameter is known to
be important, while in the present model that need is overcome by the
effect of the kernels K (x[y;).

Additionally, we performed a sensitivity analysis with regard to the
prior specification for the simulation study. Table A.1 lists performance
metrics for the proposed model under various modifications of the prior
hyperparameters. Specifically, we explored decreasing and increasing
the mass parameter of the Dirichlet process prior; decreasing and in-
creasing the variability of the local regression coefficients; decreasing
the variability of the precision of the local linear regression models;
decreasing and increasing the variability of the locations of the com-
ponents in the x-space; and increasing the location and variability of
precision of the components in the x-space. We find that the results are
quite robust to these choices.

[Received September 2012. Revised December 2013.]
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